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Abstract. The ubiquity of Wireless Fidelity (Wi-Fi) signals in urban 
environments has the high potential to employ them for numerous applications for 
localization and guidance in urban environments. The reach of Wi-Fi localization is 
extended in this study for urban wide applications and therefore user localization is 
employed for outdoor and combined in-/outdoor environments. The chosen 
application is the localization and routing of public transport smartphone users. 
For the conducted investigations, Received Signal Strength Indicator (RSSI) values 
are collected for users who are travelling from home in a residential neighborhood 
to work in downtown and return along the same route. Special tram trains are 
selected which provide two on-board Wi-Fi Access Points (APs). Firstly, the 
availability, visibility and RSSI stability of the Wi-Fi signal behavior of these APs 
and the APs in the surrounding environment along the routes is analyzed. Then the 
trajectories are estimated based on location fingerprinting. A first analyses reveals 
that significant differences exists between the four employed smartphones as well 
as times of the day, e.g. in the morning at peak hours or at off-peak hours. 

Keywords. Wi-Fi positioning, User localization, Public transport, RSSI measurements, 
Performance analysis 

1. Introduction

Wi-Fi location fingerprinting is a method of finding a mobile 
device/person’s location based on the RSSI of Wi-Fi networks (see e.g. 
Chen et al., 2012; Honkavirta et al., 2009; Liu et al., 2007; Xia et al., 2017). 
In an age of growing Wi-Fi coverage this method is becoming increasingly 
useful in areas where a GNSS signal does not reach, such as underground or 
within the built-up city area. In the case of this study, the operability and 
performance of Wi-Fi fingerprinting is investigated at a set number of 
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reference points, referred to as Intelligent Check Points (iCPs), along a tram 
route. Here the major aim is to facilitate localization and optimum routing 
considering travel times and user preferences in multi-modal transport 
situations. In the presented tests, a route from a residential neighborhood 
to an University building in downtown is selected and analyzed. For that 
purpose, a short system training was performed in the beginning along the 
selected trajectory at benchmarks and public transport stops where only a 
few samples of RSSI were collected. Furthermore, long-term repeatedly 
observations of the Wi-Fi RSSI along the tram route are used for 
continuous system updating and training. The most significant novelty of 
this study is the use of the RSSI observations of the mobile Access Points 
(APs) installed on the trams (Retscher and Bekenova, 2019). In a first step, 
the RSSIs were analyzed concerning their availability, visibility and RSSI 
stability of the Wi-Fi signal behavior. Experiments conducted along the 
selected tram route leading through combined out-/indoor environments 
are described in the following. 

2. Characteristics of the Selected Tram Route 

 

Figure 1. Tram route showing the average RSSI values recorded at each iCP 
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The particular feature of the tram route is that it runs on different levels 
partially underground and then above ground in the middle of a road (see 
Figure 1). Checkpoints are employed which are either benchmarks at the 
start or from a University campus wide network as well as station buildings 
and stops. The route starts at checkpoint 201 (which is a benchmark) and 
ends at the office 0333 on the third floor in the multi-story office building 
leading over the checkpoints 30 to 40. Checkpoint 30 is at the entrance of 
the first underground public transport stop and checkpoint 31 at the 
platform. Checkpoint 34 is located at the last station in the tunnel and then 
the tram travels above ground from the stops 35 to 37 in the middle of a 
road. At checkpoint 37 the user exits the tram and walks then to the 
University building along checkpoints 38 to 39 whereby the second 
checkpoint is front of the main entrance of the building. Checkpoint 40 is 
located inside the building on the ground floor and checkpoint 0333 in 
front the respective office in the corridor on the third floor. The total one 
way travelling time is around 15 to 20 minutes depending on the waiting 
time for the tram. In the presented tests, the trains with on-board Wi-Fi 
networks are selected. 

3. Availability, Visibility and RSSI Stability of the    
Wi-Fi APs 

Figures 2 and 3 show two different ways of presenting the changing RSSI 
values, Figure 2 for the Samsung 1 (S1) smartphone in 2D and Figure 3 in 
3D for all four phones employed in this study.  

 

Figure 2. 2D plot for the Samsung 1 smartphone showing the RSSI values along the route 

Figure 3 shows more similarities than differences between the graphs as all 
four smartphones follow a similar trend. The tunnel is very pronounced 
with a clear channel of -100 RSSI values. Before and after the tunnel values 
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fluctuate around -80 dBm before sharply increasing to exceptional signal 
(around -45 dBm) inside the office building. These graphs indicate that the 
environment had the dominating influence on the RSSI values rather than 
the phones specifications, for example being underground leads to 
worsened RSSI values. 

 

Figure 3. 3D line plots for each smartphone 

The 3D bar graph presented in Figure 4 clearly shows how the number of 
APs changes along the tram route. The visualization shows a clear drop in 
the number of APs received by the phones between reference points 31 to 
34 where the tram passes underground through a tunnel. This can be 
explained as a case of the underground segment of the public transport 
network simply having less Wi-Fi coverage than the areas above ground. 
The walls of the tunnel are blocking any APs situated on the surface and 
therefore only Wi-Fi APs within the tunnel (e.g. hotspots from people’s 
phones and the two on-board Wi-Fi APs) will be registered by the mobile 
devices. The graph also allows for the comparison of each mobile device. It 
can be clearly seen that the Nexus smartphone picks up the largest number 
of APs out of all of the smartphones. Despite Samsung 1 and 2 being the 
same smartphone model, Samsung 2 received notably more APs than 
Samsung 1. This may result from a number of reasons such as battery life, 
type of case on the phone and/or where the individual taking the 
measurements was standing. As for the LG Nexus, due to the high number 
of APs received, compared to the other phone models it must be assumed 
that this device has a much better receiver for picking up Wi-Fi networks. 
This phone can be considered the best device for Wi-Fi fingerprinting as it 
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will give the highest number of APs and in turn RSS values therefore 
providing the most accurate tool for measuring Wi-Fi coverage, operation 
and performance.  

 

Figure 4. 3D bar graph of RSSI for all mobile devices at each iCP  

 
Figure 5. 3D visualization of RSSI variations for all mobile devices at each iCP 

The 3D bar graph shown Figure 5 visualizes the RSSI variations of all the 
mobile devices at each iCP. At each reference point (Z-axis) the minimum, 
mean, median and maximum RSSI values are represented against the 
number of scans at each location (20 for each mobile device) shown along 
the X-axis. The colour scale signifies the RSSI with blue characterizing a 
poor signal and yellow a strong signal. At reference point 37 the signal is 
strongest with values well into the 90s range. This could be due to the 
number of people with hotspots in the vicinity or a particularly large 
number of APs in the neighbouring buildings which are subsequently 
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received by the mobile devices. As expected and seen previously the worst 
signal is in the tunnel where the least number of access points exist and 
signals from the surface cannot penetrate.  

4. RSSI and AP Count Comparison 
Figure 1 is a map output showing the average RSSI recorded across all 
phones at each iCP. These calculations presented a different picture to all 
other analysis undertaken in this study. Most notably the underground 
stations (Eichenstrasse, Matzleinsdorfer Platz, Kliebergasse and 
Laurenzgasse) have the highest RSSI values and inside a technical 
university has some of the lowest recorded. To try and understand the 
reasons for this trend the analysis shifted focus to the count of APs for each 
phone at every stop. Figure 6 presents the AP count for each phone at each 
iCP. Here it is clear that there are considerably less APs collected inside the 
tram tunnel. This indicates that RSSI values are not positively correlated 
with the AP count (the higher the RSSI doesn’t necessarily mean more AP 
signals being received). Figure 6 also shows the Samsung phones have 
received considerably less AP signals than the LG Nexus and Sony Xperia. 
Despite Figure 4 this shows that LG Nexus has similar RSSI values despite 
receiving more AP signals at the majority of the iCPs. This further supports 
the inference that the higher RSSI doesn’t always result in more AP signals 
being received. The chart in Figure 7 compares the average number of APs, 
received across all four phones at each tram stop, with the respective 
average RSSI. Both, the number of APs and the RSSI follow a similar 
pattern in that they both change visibly when the iCPs are at street level and 
in the tunnel. However, the results came partly as a surprise when 
analyzing the data captured by the phones. Whilst the number of APs 
received in the tunnel are low, presumably because of the few APs available 
(such as nearby fellow passengers), the RSSI was at its highest in the 
tunnel, at iCP 33 (Kliebergasse) even as high as -62 dBm which is 
considered as a good RSSI value. The possible reasons for this unexpected 
result are further investigated by looking into the whole dataset. It was seen 
that the LG Nexus at iCP 31 (Eichenstrasse) did not receive many APs at 
this location but the ones it did were received very well with an RSSI of up 
to -34 dBm which is considered as very good. The AP that shows up most 
often in this and similar environments, such as iCPs 32 to 34, come from 
the network called “ArberFazliu” which was owned by team member Arbër 
carrying out the survey. As we worked in a team taking measurements close 
together and always facing in the same direction at the same time, it is 
believed that this spatial constellation led to the very good RSSI results. 
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5. Conclusion 
In conclusion, there is high variability in the RSSI values found along the 
tram route and this study has shown that there are many factors that 
influence this. The RSSI is heavily influenced by the position of buildings or 
other infrastructure, the most notable example in this study being the 
underground section of the route. Orientation of the device also played a 
role, particularly in the underground iCPs due to the presence of physical 
barriers that can block or impede the signals. If there is an AP originating 
from an underground environment this typically leads to very high RSSI 
values being received due to the close proximity of the hotspot APs to the 
devices. Different phones yielded different results for both RSSI values and 
number of APs received. This is suspected to be down to the phone 
specifications with the LG Nexus having the most sensitive receiver and 
therefore picking up the highest number of APs at each iCP. However this 
cannot account for the differences between the two Samsung devices which 
were the same model and therefore had the same specifications. Their 
difference can be justified by comparing the phone’s battery life, type of 
phone case and the position that the user holding the phone was standing 
in. These can be considered possible future avenues for research which 
would require further measurements with phones of the same model.  

Overall, the Wi-Fi fingerprints at each iCP were distinguishable from one 
another and would therefore allow for the accurate positioning of a user at 
these points. To improve these databases the number of measurements 
taken at each point could be increased to improve the accuracy and 
therefore the reliability of the iCP recognition. Measurements at different 
time periods and at different times of year could also help improve the 
checkpoint recognition as this study was focused on only two days of the 
year in May. These improvements are required to improve the overall 
accuracy because the RSSI values change throughout the year and, in 
general, are affected by the number of people present at that particular time 
(mobile hotspots, blocking of the signal, etc.). Finally the use of a greater 
range of smartphone devices would further increase the accuracy of the 
database as the majority of people are not limited to owning a Samsung 
Galaxy S3, LG Nexus 5X and Sony Xperia Z3.  
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