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Abstract. Location-based services in the maritime domain aim to improve 
efficiency and safety of vessel operations. Predictive functionality can in-
crease the value of these services beyond ordinary visualizations of the cur-
rent operational picture. Trajectory prediction aims to forecast the future 
path of vessels and can thus help improve logistics as well as help predict 
potentially dangerous situations. This paper presents ongoing work on da-
ta-driven trajectory prediction that leverages information of past vessel 
movements to improve prediction results. Preliminary results show that 
data-driven prediction outperforms baseline approaches, particularly in 
complex situations. However, results also show a large spatial variability in 
prediction performance. This indicates that it is impossible to compare the 
performance of different prediction methods by relying solely on the error 
statistics reported in publications since every research group uses different 
data samples from different geographic regions. 

Keywords. Computational movement analysis, trajectory prediction, Au-
tomatic Identification System 

1. Introduction

Methods for extracting useful information from increasingly massive 
movement data are lagging behind the tracking technology that generates 
these datasets (Long & Nelson 2013). Frameworks and predictive models 
for movement data in GIScience therefore are an important research ave-
nue towards understanding, simulating, and predicting movement (Dodge 
et al. 2016).  
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In the maritime sector, for example, all vessels of a certain size are tracked 
since they are required to carry Automatic Identification System (AIS) re-
ceivers. They have to broadcast their information (including location and 
status) to other vessels and AIS base stations in their vicinity. The resulting 
AIS data is an important input for location-based services, such as vessel 
traffic services (VTS).  

This work focuses on data-driven vessel trajectory prediction, also known as 
route estimation (Tu et al. 2018) or future location prediction (Georgiou et 
al. 2018). In contrast to other moving objects, such as land vehicles and 
aircraft, ships typically exhibit slow parabolic maneuvers. They cannot stop, 
turn or reverse abruptly and their movement occurs on a two dimensional 
plane (Tu et al. 2018). Vessel trajectory prediction methods come in three 
main classes: physical model-based methods, data-driven methods, and 
hybrid methods (Tu et al. 2018). Physical model-based methods include 
linear and kinematic prediction but, particularly kinematic prediction is 
mostly used in the context of trajectory interpolation rather than prediction 
(Long 2016, Sang et al. 2016). Data-driven methods are increasingly popu-
lar and vary considerably in their approaches and complexity. One type of 
data-driven methods are map-based approaches using attracting and repel-
ling forces (Vespe et al. 2008). Approaches that are trained using previously 
observed movement include, for example, Hebbian learning of location 
changes between grid cells (Bomberger et al. 2006), Ornstein–Uhlenbeck 
(OU) processes (Vivone et al. 2017), perceptrons and multi-layer percep-
trons (MLP) (Zorbas et al. 2015, Valsamis et al. 2017), and neural networks 
(Gao et al. 2018). The prediction errors reported for different prediction 
approaches vary significantly. For example, error values range from 153m 
to 1314m (Valsamis et al. 2017) for 4-minute predictions to 7km (Zorbas et 
al. 2015) for 1-hour predictions, as listed in Table 1. To the best of our 
knowledge though, existing approaches (Table 1) all base their evaluations 
on different regions and do not take into account spatial variability within 
and between regions. 

Paper Method Prediction: 4min 5min 10min 15min 20min 30min 60min 

Valsamis Linear 890  2,186  4,256 6,477  

Graser Linear  520 1,247 1,923    

Wijaya Similar trajectory   900 a     

Graser Similar trajectory  436 919 1,344    

Graser Gaussian mixture 
model 

 582 1,029 1,522    

Zorbas Perceptron      3,000 7,000 

Valsamis Multi-layer perceptron 153  652  983 1,721  

Valsamis MLP time series 1,314  1,896  2,102 4,613  

Table 1. Trajectory prediction errors (mean distance error in meters) (a median error) 
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Most works measure prediction error using distance error, that is the dis-
tance between predicted position and observed position. Other less com-
mon error metrics include cross-track error and along-track error as illus-
trated in Figure 1. Cross-track error measures the distance between predict-
ed position and the observed trajectory. It thus provides information about 
how well the prediction reflects the true movement direction. In contrast, 
along-track error measures the error along the observed trajectory and thus 
provides information about how well the prediction reflects the true speed.  

 

Figure 1. Prediction error measures 

The rest of this paper is structured as follows: Section 2 presents prelimi-
nary results of our ongoing work on data-driven trajectory prediction with a 
specific focus on the spatial variability of prediction performance. Finally, 
Section 3 provides an outlook towards planned future work. 

2. Data-driven Vessel Trajectory Prediction 

The data-driven prediction approach presented in this work is inspired by 
Wijaya & Nakamura (2013). It is based on the concept that historical trajec-
tory data provides a sample of potential paths that objects can travel. To 
predict future locations, we search the historical data for moving objects 
that were moving along a similar path. While different distance metrics are 
conceivable to determine similarity, this approach relies on selecting past 
trajectories of vessels of the same type, located in the same region, and 
moving in the same direction at similar speeds. Then we determine the lo-
cations of those vessels after the defined prediction time frame. The com-
plete algorithm can be summarized as follows:  

1. Find n similar trajectories: for a given observed track, identify up to n 
similar trajectory segments that move in the same direction (direction 
tolerance αmax), at similar speed (speed tolerance vmax and are at most 
dmax (distance tolerance) meters from the observed track  

2. Identify potential future locations: for each identified segment deter-
mine where the moving object was located after the given prediction 
time frame  
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3. Compute the final prediction given the set of potential future locations 

If no similar trajectories are found in the historical database, the method 
falls back to linear prediction. This mostly happens in open areas where 
vessels do not need to follow shipping lanes and it is therefore less likely to 
find a trajectory within the distance tolerance. 

Linear trajectory prediction is a commonly used base line for comparison 
(Graser et al. 2018, Valsamis et al. 2017). It is based on the assumption that 
vessel movements will continue with the last observed direction and speed. 
Direction and speed can be instantaneous values that are provided by the 
input data, or alternatively, direction and speed can be computed from con-
secutive data records.  

 

(a) Linear trajectory prediction errors are highest in coastal regions near Frederikshavn, 
Skagen, and particularly Gothenburg. 

 

(b) Similar trajectory prediction error distributions show improvements where linear pre-
diction suffers from large cross-track errors. 
Figure 2. Spatial distribution of 20 minute trajectory prediction errors based on 3 minutes 
observations for cargo vessels 

Figure 2 shows the cargo vessel trajectory prediction performance for 20-
minute predictions in the sea between Denmark and Sweden, near Gothen-
burg. The largest linear prediction errors (Figure 2a) are observed in coastal 
regions, particularly near Frederikshavn (Denmark), Skagen (Denmark), 
and Gothenburg (Sweden). Similar trajectory prediction error distributions 
(Figure 2b) most notably show improvements where linear prediction suf-
fers from large cross-track errors, indicating that this data-driven predic-
tion method manages to better capture vessel movement directions.  
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However, not all regions exhibit improvements from data-driven predic-
tion. This is due to the behavior of cargo vessels which tend to travel on 
straight courses at constant speeds if there are no specific reasons to do 
otherwise. This behavior is well represented by linear trajectory prediction. 
It is therefore hard to beat linear prediction performance in these regions.  

Particularly in coastal regions, however, there are external reasons for ves-
sels to change course and speed. Therefore, switching from linear to similar 
trajectory prediction results in better predictions in these areas. In our ex-
ample, seven regions fall into this category. Replacing linear trajectory pre-
diction with similar trajectory prediction in these regions improves the re-
sults for five out of seven regions. The largest improvement is observed near 
Gothenburg with a mean distance error reduction by 2,252m. The mean 
improvement over all seven regions is 769m. 

3. Conclusions and Outlook 

Our work on data-driven vessel trajectory prediction for maritime LBS is 
still ongoing. The preliminary findings presented here show that even com-
paratively simple data-driven prediction approaches outperform basic line-
ar prediction in areas of complex movement. Furthermore, our results show 
how prediction performance varies across different geographic regions. 
This considerably impacts the interpretation of existing vessel trajectory 
prediction publications, as well as their potential to inform the selection of 
prediction methods for future applications. Comparing trajectory prediction 
errors found in the literature is meaningless without access to the same 
evaluation data.  

In the future, we plan to improve on the data-driven trajectory prediction 
presented in this paper. In particular, we envision data-driven trajectory 
prediction methods that make use of movement patterns that can be ex-
tracted from massive movement datasets. Depending on the area of inter-
est, vessel movement patterns are furthermore influenced by other factors, 
such as tides, current, and visibility. Finally, since nearby vessels influence 
each other’s movement, future prediction methods should also take the sur-
rounding traffic situation into account. 
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