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Abstract. Recent years have seen an extensive exploration of the potential
of mobility data. Mobility data are gathered from personal devices and as
technologies advance, so does the volume and variety of data that they
gather. Such data, however, bring about increased concern over the
potential for revealing sensitive information. Although there have been
many methods proposed for protecting mobile data privacy, they come at a
price of either limiting data utility or the level of privacy protection. In this
work, we present an approach that preserves global mobility-related data
properties and at the same time protects privacy. Our preliminary results
show that we can enhance the usability of synthesized data while proving no
breaches of privacy. Our contribution can be considered as a new mobility
modelling method as well as a privacy-protecting algorithm.
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1. Introduction

The availability of movement trajectories has influenced rapid development
in human mobility studies. Location data are now extensively collected
through ubiquitous devices, such as mobile phones, fitness bracelets and
location loggers. The high temporal and spatial resolution of these data
unlocks the potential for many applications where human movement is an
important factor to consider. Mobility traces have proven their significance,
for example, in traffic forecasting, city planning and utilities management.

High data utility comes at a price of privacy disclosure. Simply removing
personal details such as a name from a released dataset does not preserve
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privacy, as in many cases a person can still be re-identified from a
combination of attributes such as postcode, gender and age. Moreover, due
to high uniqueness of human mobility trajectories, aggregation does not
improve the privacy of the data and at the same time causes a loss of
precision and limits data utility (Fiore et al., 2019). Hence, data accessibility
is limited in many countries by laws such as the General Data Protection
Regulation (GDPR) (European Parliament, 2016).

The goal of anonymisation is to protect the privacy of individuals and retain
the utility of human mobility traces (Fiore et al.,, 2019). The two most
commonly used groups of anonymisation methods are based on 1) k-
anonymity and 2) uninformativeness and differential privacy principle (Mir
et al., 2013; Fiore et al., 2019). k-anonymity of traces is achieved when a
subset of spatiotemporal points of each person is indistinguishable from at
least k - 1 other subsets. Nevertheless, it is not clear what k value is
considered sufficient for full privacy protection. The anonymisation
methods based on the uninformativeness and differential privacy principle
assume that data are stored in a database and are accessible only through
the limited subset of queries, which are modified to produce noisy outputs.
Differential privacy is satisfied when an observer cannot tell when a
particular person's data were used to produce a result. However, because
the data themselves are not modified, they can be stored in this database
but cannot be published. One of the alternative approaches proposed in the
literature is to synthesize traces using the original mobility dataset (Mir et
al., 2013). Synthesized data preserve global mobility properties, while the
individual traces do not contain true information. Therefore, such data can
be freely published but analysed only at a collective level.

2. Modelling

In this paper, we present an ongoing work to extend the Differential Privacy
- Work Home Extracted REgions (DP-WHERE) model proposed by Mir et
al. (2013). It draws probability distributions of various statistical features of
human mobility from a dataset. Next, uses them to generate synthetical
trajectories which can be freely published. We extend the DP-WHERE
model into the DP-WHO-WHEN-WHERE model which includes spatial
and temporal aspects of human mobility and captures multiple mobility
behaviours. As a result, we improve the modelling process to achieve higher
accuracy of the global properties of the mobility-related dataset. Similarly
to the DP-WHERE model, derived distributions are modified by a noise
creating the DP-WHO-WHEN-WHERE, a differential privacy protection
algorithm.

Page 118



LBS 2019

Three aspects of human mobility, further named components, are used as
the foundation of the DP-WHO-WHERE-WHEN model (Fig. 2). The first
component, WHO (Working HOurs shift groups) is responsible for finding
individuals with similar temporal mobility behaviour. The WHERE
component controls the spatial aspect of mobility. The last component,
WHEN (Work-HomE circadiaN rhythm) controls the temporal aspect of
mobility and determines the circadian rhythm of each synthesized group of
people.
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Figure 1. The proposed WHO-WHEN-WHERE modelling process.

The input data are composed of the input dataset, aggregation layer and
temporal patterns. The input dataset consists of original mobility traces
used to estimate the mobility-related distributions. The aggregation layer
(i.e. grid-based partition) is used as a spatial reference for the data. The
temporal patterns are used as a temporal reference for synthesised mobility
traces. They determine the exact timestamp of a point in the trajectory and
reflect the frequency of location updates.

The whole modelling process is repeated the number of times determined
by the WHO component. First, home and work locations and the distance
between them are determined for each person. These are used to construct
his/her parametric activity space (also known as the use of space) in which
a person spends most of his/her time. Any place apart from home and work
locations inside the activity space is further considered as ‘another place’.
Next, the person's circadian rhythm (empirical distribution) is drawn from
his/her movement and divided into three categories: home, work and other
places. These locations have each an assigned probability of a person
appearance in a given time of day. It is calculated by counting and
normalising the total number of appearances of each person in one of those
locations throughout the whole period of the study. Using a clustering
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algorithm (for example Self-Organising Maps (Bianchi, Rizzi, Sadeghian &
Moiso, 2016)) circadian rhythms are grouped to find people with similar
temporal patterns of movement. In doing so, the population groups as well
as their share in the whole population are determined.

For each cluster WHERE and WHEN components are calculated. First, the
algorithm transforms the detected home and work locations into two spatial
distributions. Next, a third spatial distribution of median commuting
distance (median distance between home and work) is determined. The
WHEN component calculates an average circadian rhythm in each cluster.

Mobility traces are synthesised using the distributions from each cluster.
The spatial distribution of home locations is used to select the home
location for each synthesised trace and the commuting distance is used to
determine the distance in which the work location is selected. This step is
identical to the original DP-WHERE model (for more information see
Isaacman et al., 2012). From these, an activity space is constructed using
one of the activity space approximation algorithms.

Each trace is synthesised accordingly to the temporal pattern from the
input data. Single spatiotemporal point is generated in a repetitive process
as follows: (1) a timestamp is read from the temporal pattern; (2) current
location (either home, work or another place) is selected for a given time of
day from circadian rhythm distribution; (3) coordinates of that place are
read from the activity space. If another place is selected, it is randomly
chosen inside the activity space. Coordinates and a timestamp are written
as a single record with a random user identifier.

3. Preliminary Results and Discussion

Number of clusters to synthesize increases computation complexity
linearly. Therefore, at this stage of development, we evaluate the model
without the clustering process, hence the average of distributions is
calculated for the whole input dataset and it can be considered as WHEN-
WHERE model. We compare its performance to the WHERE model in two
cases (Test Case - TC1 and Test Case 2 - TC2).

TC1 is based on the 5000 mobility traces generated from the New York Taxi
Cab and the US Census data for the city of New York. As an aggregation
layer for the test case and further calculations, we use census tracts from
the Census Bureau's geographic database. To preserve the real distribution
of the New York City population, we use census data to calculate home and
work locations. Also, we sample New York City cab traces to determine the
commuting distances. We randomise each person's circadian rhythm. To
eliminate the impact of the temporal aspects on the results, trajectories are
synthesized with the same frequency as they were recorded.
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For the TC2, we evaluate our model on the real data gathered by Global
Positioning System (GPS) loggers from 173 people from the Kingdom of Fife
in Scotland. This test case investigated the ability of the evaluated
algorithms to capture and model real-life movement flows. To model
population mobility, we aggregated the data into a regular grid of 81 x 66
km, divided into 1 x 1 km squares.

For the TCs, we compare hourly population distributions of the input and
output datasets using the Earth Mover's Distance (EMD) measure (results
shown in Fig. 2). When referenced to the same aggregation layer, quantified
similarity of two spatial distributions can be interpreted directly in meters.

Two variants of the WHEN-WHERE model are evaluated, one full and one
that does not extend the WHERE component with the activity space. In
both cases, we note higher accuracy levels yielded by our model. For the
TC1 there is more than 50% of improvement over the WHERE model. The
WHEN-WHERE model is more than one kilometre more accurate on mean
position error, which is 2272 m for the WHEN-WHERE and 3588 m for the
WHERE. For the TC2 the accuracy varies from 2 km for the late evening
hours, when most of the people are at home, up to 5 km in the morning.
Our model continually performed better than the WHERE model. The
WHEN-WHERE model produced at least 12% smaller position error than
WHERE. High errors for the morning hours were caused by the gaps in the
original GPS data.
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Figure 2. Comparison of the EMD error for datasets synthesised using (a) generated test
case and (b) real data.

We measured the individuals' privacy protection by comparing the daily
traces found in the original and synthesised data. It is expected that no
trajectory would be matched in both datasets, which means that any real
trace is included in the synthesised data. We considered trajectories to be
identical when they had the same sequence of consecutively visited
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locations in an individual’s daily itinerary. The longest matching sequence
appearing in the compared datasets contained three locations for the first
test case and two for the second, which stand for 10% and 5,4% of a daily
trace, respectively. Furthermore, as a measure of activity spaces similarity,
we calculated a number of people whose most frequently visited locations
were identical. There were 340 (TC1) and 2 (TC2) people having the same
set of the two most frequently visited locations and 5 (TC1) having the same
set of the three most frequently visited places.

We compared the performance of the WHERE model and not yet fully
developed WHO-WHEN-WHERE model for the synthetic and real data. We
demonstrated that our model reaches a higher accuracy than the WHERE
model and guarantees no breaches of privacy in published data.

In future work, we plan to introduce the WHO component into the model
that will enable us to achieve an even larger accuracy improvement in all
the cases. We will also adjust the model to satisfy the requirements of
differential privacy. At the current stage, the synthesized mobility traces
could be published, but the calculated probability distributions cannot as
they breach the privacy.
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