
Concerns on Design and Performance of a Lo-
cal and Global Dynamic Map

Itziar Urbieta, Irati Mendikute, Harbil Arregui, Oihana Otaegui

Vicomtech, Mikeletegi 57, 20009 Donostia (Spain)

Abstract. Current real-time data collection systems for urban transporta-
tion and mobility allow enhancing digital maps with up-to-date situational
information. This information is of great interest for short-term navigation
and route planning as well as for medium- to long-term mobility data anal-
ysis, as it provides a finer time-varying detail of the urban movement infra-
structure. In this work, we present our ongoing work to design a represen-
tation of a unique urban movement space graph as a local and global dy-
namic map approach. We address the concerns that must be considered
when handling different scales of geographic areas inside a city, according
to the application.

Keywords. Dynamic map, Spatial, Graph databases

1. Introduction
Digital representations of both transport networks and movement data col-
lected by any sensing technique need to be stored in efficient electronic
formats if we aim to use them for navigation or short-term mobility plan-
ning purposes. How they are stored and indexed, in fact, will impact the
read and write access times, as well as the performance of spatial or tem-
poral joins of any kind.

Digital maps of several levels of detail are used to represent the city in-
frastructure devoted to transportation purposes. Current extended sensing
and data collection techniques allow measuring and reporting the real de-
mand of this infrastructure and what is happening at large scale. These digi-
tal maps can be of interest from a first-person view, locally (the moving
vehicle, passenger or citizen), or from a third person view, globally (a city
mobility manager or a transportation planner authority).

LBS 2019

Page 31

Published in “Adjunct Proceedings of the 15th International Conference on
Location Based Services (LBS 2019)”, edited by Georg Gartner and Haosheng
Huang, LBS 2019, 11–13 November 2019, Vienna, Austria.

This contribution underwent double-blind peer review based on the paper.
https://doi.org/10.34726/lbs2019.42 | © Authors 2019. CC BY 4.0 License.

Several works have addressed the computational challenges of storing
and querying records that represent locations, movements and trajectories,
like Evans et al. (2013). Research on the concept of a Local Dynamic Map
(LDM) has been mainly oriented to automotive navigational purposes, e.g.,
Shimada et al. (2015) and Eiter et al. (2019). The purpose of LDM is to pro-
vide the nearest location information to moving agents as they move. The
most known approach consists of four different layers, from the most static
to the most dynamic. To our knowledge, no other authors have tried to use
the same map for a Global use. Thus, we present the concept of the Local
and Global Dynamic Map (LGDM).

2. Problem statement and research objectives
We envision that the extension of the same Dynamic Map to Global applica-
tions may feed high level transportation planning purposes. The main chal-
lenge that arises when considering the LGDM is scalability. Thus, we find
the need to evaluate the response time and graph behavior when it comes to
perform basic operations both locally and globally. For evaluation, we
choose the geometric map-matching as one of the most frequently used
basic operations. This operation associates a vehicle position to an element
on the digital transportation infrastructure map. Being aware of the limita-
tions will allow creating a graph model with optimum performance for
global and local analysis.

The main research objectives of the present on-going work are two-fold.
First, we aim to define a consistent graph model to represent the urban
road infrastructure as a time-varying dynamic map for local and global use.
Secondly, we seek to evaluate the implications of the size of the graph (in
terms of number of nodes) when computing the needed operations so as to
develop the most suitable graph partitioning method. These main objectives
are built upon some partial objectives: the study of options to build the
network from raw OpenStreetMap (OSM) data (OpenStreetMap contribu-
tors 2018) and the integration between a real-time feed of vehicle locations
and the network map.

3. Methodology and preliminary results
In our research, we have chosen Neo4j as a graph database management
system for its lower learning curve. For an overview of different graph data
base frameworks, we refer the reader to work published by Kumar Kaliyar
(2015). We have chosen OSM as the transportation network data source,
and the SUMO simulation framework, (Lopez et al. 2018), for creating syn-
thetic vehicle movement data.

LBS 2019

Page 32

The transportation infrastructure network is a directed graph, repre-
sented by a set of nodes and vertices, associated by a collection of numerical
and categorical properties. To import this data from OSM, we have evaluat-
ed different alternatives.

• Osm2po, (Moeller 2018), is a converter and routing engine. It allows
filtering from OSM attributes to build a routable network. Then, we im-
port its output manually into Neo4j. We have tested two variants: repre-
senting ways as nodes or as relations. The first variant adds complexity
to the network since the number of nodes is significantly higher, but it is
more flexible when querying the graph.

• Spatial plugin for Neo4j. This option avoids the need to pre-process
the OSM file. The spatial functions it provides make the process easier
and faster. However, the way of representing the information has been
found less intuitive. In addition, intersections are not easily identified,
thus limiting some route analysis.

• Additional tools such as https://github.com/neo4j-contrib/osm

In order to simulate the generation of vehicle positioning traces that can
be matched onto the network we use the SUMO traffic microsimulation
tool. The output of SUMO is a Floating Car Data (FCD) xml file. The TRaCI
interface enables the access to a running simulation and allows reading all
variables describing vehicle behavior online from our Python code. The
most valuable information obtained is the location of a given vehicle at each
simulation step.

Afterwards, we need to store this data into the Neo4j graph database
where the OSM network has been previously loaded. After evaluating some
different drivers to interact with Neo4j from our Python code, we chose the
official Neo4j Python driver. At each simulation step, a reference vehicle is
taken as the ego-vehicle. Step by step, a new node is created at each time
instant in Neo4j, adding all the attributes that the TRaCI commands ex-
tract. Then, we apply a geometric map-matching, which consists of assign-
ing the network node closest to the vehicle position by creating a new rela-
tion (LOCATED_IN) between the nodes in Neo4j.

TraCI slows down the simulation speed and there are several factors
that condition its performance such as 1) the number of TraCI function calls
per simulation step; 2) the types of TraCI functions being called; 3) the
computation within the TraCI script; and 4) client language. Moreover,
there are also other estimations related to the response time and the client
language already given in the documentation.

To make the evaluation and compare different cases of the complexity
of the matching process according to the size of the network, we record: the
initial, final and middle simulation step times and the average step dura-

LBS 2019

Page 33

https://github.com/neo4j-contrib/osm
https://github.com/neo4j-contrib/osm

tion, as well as the total duration of the simulation and the number of ele-
ments in the database. Two simulation-related figures are also given: real-
time factor and updates per second (UPS). Real time factor represents the
relation simulated time / computation time. UPS (updates per second) de-
notes the number of vehicles that were simulated on average per second of
computation time. Two different cases have been evaluated simulating 100
steps with a step-length of 0.1s, in 7 executions each, linearly increasing the
number of nodes in the database, thus enlarging the geographical area con-
sidered:

Case 1: Response time of the simulation with map-matching of
vehicle. In this case, for the evaluation of the response time of the simula-
tion, the first approach has been simulating several times the script with the
complete simulation. This way, the number of elements in the database
increased linearly since the number of nodes was every time the same (Ta-
ble 1).

Trial Nodes Relations Duration
[ms]

Real
time
factor

UPS Average
step [s]

Final
step
[s]

Initial
step [s]

Middle
step [s]

A 263447 284412 65760 1.55 74.55 0.64 0.68 0.78 0.65
B 263543 284415 111684 0.91 43.90 1.11 1.12 1.34 1.08
C 263639 284418 152837 0.66 32.07 1.54 1.58 1.70 1.60
D 263735 284421 196572 0.51 24.94 2.00 2.02 2.11 2.00
E 263831 284424 240646 0.42 20.37 2.46 2.47 2.58 2.50
F 263927 284427 283675 0.35 17.28 2.91 2.96 2.94 2.88
G 264023 284430 330335 0.30 14.84 3.40 3.38 3.52 3.42
H 264119 284433 14779 6.90 331.75 0.12 0.11 0.19 0.11
*H = without map-matching

Table 1. Measurements obtained in case 1 with 100 steps simulation and step-length of 0.1s.

Case 2: Response time evaluation with map-matching and first
approach to build an egocentric network. The next evaluated case
has been the simulation with the map-matching considering the distance
between nodes and the first approach defined to build an egocentric net-
work. Once again, the simulation script has been simulated several times to
increase gradually the elements in the database. As an initial method to
represent an ego-centered graph, the vehicle with ‘id=0’ has been chosen to
characterize the Ego-car and new relations have been generated. First, the
ego-vehicle has been related to the cartography (EGO_LOCATED) with the
same map-matching approach. Then, to analyze the vehicles that are
around the ego-car a new NEAR relation has been created considering the
distance that exists between them in each time step (Table 2).

LBS 2019

Page 34

Trial Nodes Relations Duration
[ms]

Real
time
factor

UPS Average
step [s]

Final
step
[s]

Initial
step
[s]

Middle
step
[s]

A 263447 284412 131822 0.77 37.19 1.34 1.29 1.41 1.32
B 263639 284482 219489 0.46 22.33 2.25 2.24 2.31 2.28
C 263831 284552 305190 0.33 16.06 3.14 3.13 3.24 3.14
D 264023 284622 395011 0.25 12.41 4.08 4.37 4.21 4.06
E 264215 284692 481976 0.21 10.17 4.99 5.01 5.13 4.98
F 264407 284762 562707 0.18 8.71 5.81 5.83 5.93 5.77
G 264599 284832 660792 0.15 7.41 6.85 6.66 6.78 6.75

Table 2. Measurements obtained in case 2 with 100 steps simulation and step-length 0.1s.

4. Conclusions
Several conclusions have been obtained so far: on the one hand, the time
needed for each step increases with the number of elements in the database.
On the other hand, the initial step duration is, in general, bigger than the
others. Also, in the first case, the simulation has been executed an extra
time but without the map-matching approach (just creating a new node for
each step). So, this was the case where the biggest number of elements was
in the database. However, the response time decreased considerably in both
cases. For instance, comparing the values obtained for this execution case
(Trial H) and the first one (Trial A), can be seen that the time values are in
general 5 times smaller. Besides, it should be highlighted that this is the
best case since, if compared with the other trials, this difference increases.
Considering how the map-matching method affects the response time of the
simulation, it is still pending to make tests with other methods and com-
pare the response times.

Finally, considering the second simulation case evaluated, as expected,
the response time in general increased. This is both affected by the increase
in the number of elements and the extra queries added to create the rela-
tions.

As a future work, both simulation cases will be tested with different geo-
spatial databases to analyze and compare the graph considering the size
and performance of the system. These preliminary conclusions will be ex-
tended to decide optimal network partition strategies according to re-
sponse-time requirements for real-time applications of the LGDM.

LBS 2019

Page 35

References
Eiter, T., Fureder, H., Kasslatter, F., Parreira, J. X., and Schneider, P. (2019). Towards a

semantically enriched local dynamic map. International Journal of Intelligent Transpor-
tation Systems Research, 17(1):32–48.

Evans, M. R., Oliver, D., Shekhar, S., and Harvey, F. (2013). Fast and exact network trajecto-
ry similarity computation: A case-study on bicycle corridor planning. In Proceedings of
the 2nd ACM SIGKDD International Workshop on Urban Computing, UrbComp ’13, pag-
es 9:1–9:8, New York, NY, USA. ACM.

Kumar Kaliyar, R. (2015). Graph databases: A survey. In International Conference on Com-
puting, Communication Automation, pages 785–790.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y.-P., Hilbrich, R., Luck-
en, L., Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic simulation us-
ing sumo. In The 21st IEEE International Conference on Intelligent Transportation Sys-
tems. IEEE.

Moeller, C. (2018). Osm2po: OpenStreetMap converter and routing engine for java. URL:
http://osm2po.de.

OpenStreetMap Contributors (2018). Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org

Shimada, H., Yamaguchi, A., Takada, H., and Sato, K. (2015). Implementation and evalua-
tion of local dynamic map in safety driving systems. Journal of Transportation Technolo-
gies, 5(02):102.

LBS 2019

Page 36

	1-06_10-34726_lbs2019-42

